2.1 Rings

Ring: Commutative, unital

Homomorphism: $\varphi: R \rightarrow S$: $\varphi(r+r') = \varphi(r) + \varphi(r')$ $\varphi(o) = o$ $\varphi(-r) = -\varphi(r)$ $\varphi(rr') = \varphi(r)\varphi(r')$ $\varphi(1) = 1$ Subring : $\cdot SS R$ and $0, 1 \in S$ $\cdot Closed$ under $+, \cdot$ and -

e.g. inclusion L:S > R is a homomorphism.

Ex 2.1.2 A of subrings is a subring.

Exm 2.1.3]! homo 12 -> R

Ideal I⊴R, ∃ can_I:R→R/I, a → aI. → Surjective and ker(can) = I.

Universal property: ring S and homo $\varphi: R \rightarrow S$ with $I \subseteq \ker \varphi$, $\exists ! \overline{\varphi}: R/I \rightarrow S: R \xrightarrow{\operatorname{can}} R/I$ $\varphi \downarrow \exists ! \overline{\varphi}$

Integral domain: R s.t $0_R \neq 1_R$ and $\forall r,r' \in R$, $rr' = 0 \Rightarrow r = 0$ or r' = 0.

Ideal generated by $T \subseteq R: \langle T \rangle := Smallest$ ideal (ontaining R. $\langle r_{1},...,r_{n} \rangle = \{a_{1}r_{1} + ... + a_{n}r_{n} : a_{1},...,a_{n} \in R\}$

Principal ideal : <r>. Principal ideal domain = inlegral domain that has only principal ideals.

r divides s: $r \mid s \Leftrightarrow \exists a \in R \ s.t \ s = ar$. $\Leftrightarrow s \in \langle r \rangle$ $\Leftrightarrow \langle s \rangle \leq \langle r \rangle$.

Unif: $u \in R$ if $\exists u^{-1} s \cdot t = u^{-1} u = uu^{-1} = 1$ $(\Rightarrow) \leq u > = R.$

Coprime: r,s ER if for a ER, als and alr ⇒ a is a unit.

Prop 2.1.12: R a principal ideal domain, r,s ∈ R. r,s coprime c⇒ ar + bs = 1, (3a,b ∈ R).

2.2. Fields

Field = ring k w/ 0 = 1 and Vrek, r is a unit.

Lem 2.2.2 : Homo between fields is injective.

Characteristic of R: CharR = $\begin{cases} least n > 0 & s.t n \cdot lR = 0 & if 3 n \\ 0 & otherwise \end{cases}$

Q,R,C have char = 0 |Fp has char p.

Lem 2.2.5: Char of an int. dom. is either 0 or prime.

lem 2.2.6: Y:K > L homo of fields. Then chark= CharL.

Subfield: Subring of field that is a field.

prime Subfield: of K is the intersection of all subfields: $\left\{\begin{array}{c}
\frac{m \cdot \mathbf{1}_{K}}{n \cdot \mathbf{1}_{K}} : m, n \in 72 \text{ with } n \cdot \mathbf{1}_{K} \neq 0
\right\}$

Lem 2.2.10: Let K be a field 1) if Chark = 0, then prime subfield of K is Q. 2) if Chark = P, then prime subfield of K is IFp.

Lem 2.2.11: Every finite field has positive char.

Irreducible: $r \in R$ if $r \neq o$, r not a unit, and if $a, b \in R$, $r = ab \Rightarrow a$ or b = a unit.

Prop 2.2.14: R a principal ideal domain, and $0 \neq r \in R$. Then r is irreducible $\iff R/_{rr}$ is a field.

Exm 2.2.15. IFp a field 🖙 p is prime

3.1 Ring of Polynomials

Dfn 3.1.1 : R a ring. Poly over R is a tuple (ao, a1,...) s.t ≷i:ai≠o3 is finite.

Forms ring: $(a_0, a_1, ...) + (b_0, b_1, ...) = (a_0 + b_0, ...)$ $(a_0, a_1, ...) \cdot (b_0, b_1, ...) = (c_0, c_1, ...)$ 1 = (1, 0, 0, ...). $C_K = \sum_{i+j=k} a_i b_j$

Rephrasing: $P = (a_0, a_1, \ldots) = a_0 + a_1r + \ldots + a_nr^n$

Lem 3.1.5 (Universal property of poly ring) R,B rings. \forall homo $\Psi: R \rightarrow B$, beB, $\exists ! \Theta: R[t] \rightarrow B$ such that $\Theta(a) = \Psi(a) \forall a \in R, \Theta(t) = b$

Dfn 3.1.6: $\Psi: R \rightarrow S$ a ring homo. Induced homo" $\Psi_* : R[t] \rightarrow S[t]$ is ! and $\Psi_*(a) = \Psi(a)$ $\Psi a \in R, \Psi_*(t) = t$.

Substitution: $t \mapsto t + c$ is invertible.

Dfn 3.1.8: deg(f) = largest $n \in \mathbb{N}$ s.t an $\neq 0$ Convention: deg(o) = $-\infty$.

lem 3.1.10: R an integral domain. Then
(i) deg(fg) = deg(f) + deg(g)
(ii) R[t] is an integral domain
(iii) units in R[t] = nonzero (onstant polys
(iv) poly over R is irreducible iff has deg > 0 and cannot be expressed as product of two polynomials of deg > 0.

3.2 Factorizing Polynomials

Prop 3.2.1: k a field and $f, g \in k[t], S \cdot t$ f = qg + r and deg(r) < deg(g)

Prop 3.2.2: K a field . Then k[t] = PID.

Cor 3.2.5; ka field and let $0 \neq f \in K[t]$. $\Rightarrow f$ is irreducible $\iff K[t]/(f)$ is a field.

Lem 3.2.6: K a field and $f(t) \in K[t]$, degf >0 Then f(t) is divis by some irreducible in K[t].

Lem 3.2.7: K a field and fight $\in k[t]$. Suppose f is irreducible and fight. Then fig or filt.

Thm 3.28: K a field and 0 f f E K[t]. Then f = a f i f z ... fn for some n>vo, a e K and Monic irreducibles f u..., fn E K[t]. These guys are ! (up to reordering)

lem 3.29 ; $f(t) \in K[t]$, $a \in k$: $f(a) = 0 \Leftrightarrow (t-a)|f(t)$

Dfn 3.2.10: k a field, $0 \neq f(t) \in k[t]$, and a $\in k$ a root of f. The multiplicity of a : $!m \in 72$ s.t. $(t-a)^m | f(t) = but (t-a)^{m+1} \neq f(t).$

Prop 3.2.13: K a field and $0 \neq f \in k[t]$. Write $\alpha_1, \ldots, \alpha_k$ for any distinct roots in K of f, and m_1, \ldots, m_k for their multiplicities. Then

 $f(t) = (t-a_1)^{m_1} \dots (t-a_K)^{m_K} q(t)$

For some q(t) E k[t] that has no roots in K.

Cor 3.2.14: k a field and $f \in K[t]$. Suppose f has k distinct roots with multiplicities my..., mk. Then $m_1 + \cdots + m_k \leq \deg(f)$.

Algebraically Closed: every nonconstant poly has at least one root in K.

Cor 3.2.15: K algebraically closed. $f(t) = c(t - a_1)^{m_1} \dots (t - a_{\kappa})^{m_{\kappa}}$

3.3 Irreducible Polynomials

Lem 3.3.1 : k a field, f c K [t].

- (i) f (onstant =) f not irreducible
- (ii) degf=1 ⇒ f irreducible
- (iii) degf >, z, f has noot ⇒ f reducible
- (iv) degf ∈ 22,33, f no root ⇒ f irreducible.
- Dfn 3.3.5; primitive: poly whose coeffs have no common divisor except ±1.

Lem 3.3.6: $f(t) \in \mathbb{Q}[t]$. I primitive poly $F(t)\in\mathbb{Z}[t]$, $a \in \mathbb{Q}$ s.t $f = \alpha F$.

f irreducible "over K"

Lem 3.3.7 (Gauss)

1. prim x prim = prim over 1/2

2. irreducible over 72 ⇒ irreducible over Q.

Prop 3.3.8 (Mod p method) : $f(t) = a_0 + ... + a_n t^n \in 7L[t]$. If 3 prime p s.t płan and $\overline{f} \in H_p[t]$ irreducible over H_p , then f irreducible over \mathbb{Q} .

Prop 3.3.12: (Eisenstein's Criterion)

If 3 prime p s.t p tan, p la; $\forall i \in \{0, ..., n-i\}$, and p^2 tao, then f irreducible over \mathbb{Q} .

Lem 3.3.16: P Prime and O<i<P. Then $P \mid {\binom{p}{i}}$

Exm 3.3.17: pth Cyclotomic polynomial:

 $\bar{\Phi}_{p}(t) = 1 + t + \dots + t^{p-1} = \frac{t^{p-1}}{t-1}$

is irreducible over Q.

```
4.1 Dfn of Field Extensions
Dfn 4.1.1: M:K: M,K fields + homo \iota: K \rightarrow M
k(t) = field of rational expressions over K
k(t) : K
Dfn 4.1.10: M:k and 1 \subseteq M. k(1) := subfield
of M generated by KUY : "k with Y adjoined".
4.2 Algebraic and Transcendental Elements.
Dfn 4.2.1: M:K, aEM. a is called
• algebraic: if 30+fek[t] s.t f(α)=0
• transcendental : otherwise.
Annihilating poly: of \alpha \in M is an f \in K[t] : f(\alpha) = 0.
Algebraic 🖘 🗄 nonzero annihilating poly.
Dfn 4.2.6: XEM algebraic over K. The minimal
polynomial of a is the ! Monic poly m satisfying
       <m> = { annihilating polys of d }
lem 4.2.8: M: K, XEM alg/K , m E K[t] monic.
       " M is min. poly of d over K,
   \Leftrightarrow • m(\alpha) = 0 and mlf \forall ann. poly f of \alpha
   \Leftrightarrow \cdot m(\alpha) = o, deg(m) \leq deg(f) \forall \Box
   \Leftrightarrow • m(\alpha) = 0 and m irreducible over k.
4.3 Simple
                   Extensions
Dfn 4.3.1 A field extension is simple if
\exists \alpha \in M such that M = \kappa(\alpha).
```

Lem 4.3.4: M monic, irred. poly over K. Then (^{K[t3}/<m>): K is a simple extension generated by A, and the minimal poly of a over K is m.

Dfn 4.3.5: K a field, $L: K \rightarrow M$, $L': K \rightarrow M'$ extensions of K. $\Psi: M \rightarrow M'$ is a homomorphism over K if

this commutes:

iso if *Y* invertible

· · ·

⊾ м'

(i) $m \in K[1]$ monic, irr. poly. Then $\exists M: k$ and $\alpha \in M$ algebraic such that $M = K(\alpha)$ and α has min poly m over k. \flat if (M, α) , (M', α') are two such pairs, there is an isomorphism $\Psi: M \rightarrow M'$ over k s.t $\Psi(\alpha) = \alpha'$. (ii) $\exists M: k$ and a transcendental element $\alpha \in M$ such that $M = K(\alpha)$ \flat if (M, α) , (M', α') are two such pairs, then \exists

an iso $\Psi: M \rightarrow M^1$ over K such that $\Psi(\alpha) = \alpha^1$.

Thm 4.3.7 (Classification of simple extensions)

```
5.1 Degrees of Extensions and Polynomials
```

Dfn 5.1.1 : Degree [M:K] = dimension of M as a vector space over K.

finite: [M:K] <∞

Exm 5.1.3: $[M:K] \gg I$ $[M:K] = I \iff M = K$ $[k(t): K] = \infty$

Thm 5.1.5: $k(\alpha): K \ \alpha \ simple \ extension, with \alpha$ algebraic over K. $m \in k[t]$ min. poly of α , n = deg(m). Then $l, \alpha, \alpha^2, \dots, \alpha^{n-1}$ is a basis of $k(\alpha)$ over K. So $[k(\alpha): k] = n$.

Cor 5.1.7: M:K, $\alpha \in M$. Then K(α): K is finite $\iff \alpha$ is algebraic over K.

deg_K(a):= [k(a):k]. a algebraic ⇔ deg_k(a)<∞

Cor 5.1.9: () M:L:k, βεΜ. ⇒ [L(β):L]≤[k(β):k] () M:k, α,βεΜ ⇒ [k(α,β):k(α)]≤[k(β):k].

Cor 5.1.11: M: k, $\alpha_1, ..., \alpha_n \in M_3$, $\deg_k(\alpha_i) = d_i < \infty$. $\forall \alpha \in K(\alpha_1, ..., \alpha_m)$, Can write α in terms of $\alpha_1, ..., \alpha_n$: $\alpha = \sum_{r_1, ..., r_n} \alpha_1^{r_1} \cdots \alpha_n^{r_n}$

where r: ranges over 0,..., d; -1.

5.2. Tower Law

Thm 5.2.1 (Tower Law) M:L:K
 (α_i)_{i∈1} a basis of L over k and (β_j)_{j∈J} a basis of M over L, then (α_i β_j)_{i∈1,j∈J} is a basis of M over K.

③ M:k is finite ⇔ M:L and L:k are finite
③ [M:k] = [M:L][L:k].

Cor 5.2.4. M: L':L:K. If M: k is finite then $[L':L] \in [M:k]$

Cor 5.2.6: M:K , α,..., αn ∈ M. Then [K(α,...,an):K] ≤ [K(α,):K]...[K(αn):K].

5.3. Algebraic Extensions

Dfn 5.3.1: M:k is "finitely generated" if M = k(Y)for some finite subset $Y \subseteq M$.

Dfn 5.3.2: M:K is "algebraic" if every element of M is algebraic over K.

Prop 5.3.4: M:K is finite
⇔ M:K is finitely generated and algebraic
⇔ M = K(α₁,..., d_m) for some α₁,..., α_n ∈ M
algebraic over K.

Cor 5.3.6: $k(\alpha): K$ simple: $K(\alpha): K$ is finite $\Leftrightarrow k(\alpha): K$ is algebraic $\Leftrightarrow \alpha$ is algebraic over K.

Prop: $\overline{\mathbb{Q}}$ is a subfield of \mathbb{C} .

5.4 Ruler and Compass Constructions

A point C is ...

immediately constructible: from ∑ if it is a point of intersection between two distinct lines or circles or both.

Constructible: from Σ if there is a finite sequence $C_1, ..., C_n = C$ of points such that C_i is immediately constructible from $\Sigma \cup \{C_1, ..., C_{i-1}\}$ i.

 $k_{\Sigma} = \mathbb{Q}(\{ z \in \mathbb{R} : \alpha \text{ is a coordinate of a point in } \Sigma \})$

Thm 5.4.2: $\Sigma \subseteq \mathbb{R}^2$ and $(x,y) \in \mathbb{R}^2$. If (x,y)is constructible from Σ , then there is an iterated quadratic extension of $K\Sigma$ containing x and y.

Cor 5.4.3: If (x,y) is constructible from Σ , then χ and y are algebraic over K_{Σ} , and their degrees over k_{Σ} are powers of 2.

Lem 5.4.4: Let K be a subfield of IR and a, BEIR. Suppose that a, B are each contained in some iterated quadratic extension of K. Then there is Some iterated quadratic extension of K containing a and B.

Prop 5.4.6: O not trisected by ruler and compass Prop 5.4.7: D not duplicated by ruler and compass Prop 5.4.8: O not D by ruler and compass

Reg. n-gon constructible ⇔ n=2"p1...pk for p; dist. fermat primes

6.1 Extending Homomorphisms

Dfn: $\iota: K \to M$ and $\iota': K' \to M'$ field extensions, Let $\psi: K \to K'$ be a field homo. We say a homomorphism $\Psi: M \to M'$ extends Ψ iff $\Psi(a) = \Psi(a)$ $\forall a \in K$.

Lem 6.1.2: M: K, M':K'. Let $\psi: K \rightarrow K'$ be a homo, and Ψ extend Ψ . Let $\alpha \in M$ and $f(t) \in k[t]$. Then $f(\alpha) = 0 \iff (\psi_* f)(\psi(\alpha)) = 0$

```
Ψ injective/iso ⇒ Ψ* injective / iso.
```

Lem: M:k, M:k', Y:M→M' extends Y:k→k'. Let & ∈ M algebraic over K with min poly m. Then Y(&) algebraic over k' with min poly Y≠(M)

Prop 6.1.5: $\Psi: k \to K'$ iso , $k(\alpha): K$ simple with min poly of α over k m, $k'(\alpha'): K'$ simple with min poly of α' over $k' \Psi_{\pm}(m)$. Then $\exists!$ iso $\Psi: k(\alpha) \to k'(\alpha')$ extending Ψ satisfying $\Psi(\alpha')=\alpha'$

6.2. 3! Splitting Fields

```
Dfn 6.2.2: f \in M[t]. Then f splits in M if

f(t) = \beta(t - \alpha_1) \dots (t - \alpha_n)

for some n > 0 and \beta, \alpha_1, \dots, \alpha_n \in M.
```

Exm 6.2.3: (i) M algebraically closed if ∀f∈M[t], f splits in M.

Dfn 6.2.4: f ∈ k[t]. A splitting field of f over k is an extension M of k such that
⁽¹⁾ f splits in M
⁽²⁾ M = k(α₁,...,α_n) where α₁,...,α_n are the tools of f in M.

Lem 6.2.9: $f \in K[t]$. 3 a splitting field M of f over K such that $[M:k] \leq deg(f)!$

Prop 6.2.10: Ψ:k→k' iso, f∈k[t], M an s.f of fover k, and M' an s.f. of Ψ*(f) over k'. Then:
 ^① ∃ iso Ψ: M: M' extending Ψ
 ^② there are at most [M:k] such extensions Ψ.

Thm 6.2.12: f ∈ k[t]. Then
⁽¹⁾ ∃ a splitting field of f over k
⁽²⁾ any two splitting fields of f are iso over k
⁽³⁾ When M is a splitting field of f over k, # of autos of m over k ≤ [M:k] ≤ deg(f)!

lem 6.2.13:

- ③ M:S:K, f ∈ K[t], Y ⊆ M. Let S be s.f of f over k. Then S(Y) is the s.f of f over k(Y)
- ⁽²⁾ f ∈ k[t], L a subfield of SFK(f) (ontaining K (i.e. SFK(f):L:K). Then SFK(f) is the s.f. of f over L.

6.3. The Galois Group

Dfn 6.3.1: Gial (M:K) = group of Automorphisms of M over K, with composition as the group operation. b $\Theta \in Gial(M:K)$ iff $\Theta(a) = a \forall a \in K$.

Din 6.3.5:
$$f \in K[t]$$
. Gal $\kappa(f) = Gal(SF_{K}(f) : f)$.

Thm 6.2.12 \Rightarrow | Galk(f)| \leq [SF_K(f):k] \leq deg(f)! \downarrow finite1

Rem Gialk(f) permutes the roots or; of f

Lem 6.3.7: $f \in k[t]$. X be set of roots of g in SF_k(f). Action of Galk(f) on X defined by: Gralk(f) × X → X (θ, α) $\mapsto \theta(\alpha)$.

Dfn 6.3.9: M:K, k > 0, $(\alpha_1, ..., \alpha_k)$, $(\alpha'_1, ..., \alpha'_k) \in M^k$. Then $(\alpha_1, ..., \alpha_k)$, $(\alpha'_1, ..., \alpha'_k)$ are (onjugate over kif $\forall p \in k[t_1, ..., t_k]$, $p(\alpha_1, ..., \alpha_k) = 0 \iff p(\alpha'_1, ..., \alpha'_k) = 0$

Prop 6.3.10: $f \in K(t)$, With distinct roots $\alpha_1, ..., \alpha_k$ in $SF_k(s)$. Def. group homo Γ : $Gal_k(f) \rightarrow S_k$ as $\theta \mapsto \sigma_{\theta}$, where $\theta(\alpha_i) = \alpha_{\sigma_{\theta}(i)}$. Then Γ is injective, and has image $\begin{cases} \sigma_{E} S_k & (\alpha_1, ..., \alpha_k) \\ \alpha_{F}(1), \dots, \alpha_{G}(k) \end{cases}$ are conjugate over $k \end{cases}$

Cor 6.3.13: L:K, $f \in K[t]$. Then Gial L(f) embeds naturally as a subgroup of Gial K(f).

Cor 6.3.15: $f \in k[t]$, with k distinct roots in SF k(f). Then $|Gnalk(f)| \mid k!$

7.1 Normality

Dfn $\exists .1.1$. Algebraic field extension M:Kis normal iff $\forall \alpha \in M$, the min. poly of a splits in M.

Lem 7.1.2: M: K algebraic. M:K is normal iff V irreducible poly f E K[t], f splits in M. or f has no roots in M.

Thm 7.1.5: M=SFK(f) for some f∈K[t] ⇔ M:K is finite and normal

Cor 7.1.6: M:L:K. IF M:K is finite and normal, then so is M:L.

Prop 7.1.9: M:K finite and normal, $\alpha, \alpha' \in M$. Then α', α' are conjugate over k \Leftrightarrow $\alpha' = \varphi(\alpha)$ for some $\varphi \in Gral(M:K)$.

Cor 7.1.10: $f \in k[t]$ irreducible. Then the action of Galk(f) on the roots of f in SFk(f) is transitive: $\forall \alpha, \alpha' \in SF_k(f), \exists \varphi \in Gal_k(f)$ such that $\varphi(\alpha) = \alpha'$.

Thm 7.1.14: M:L:k, with M:k finite, normal.
 ① L:k is normal ⇔ 4L = L ∀ 4 ∈ Gal(M:k)
 ② L:k normal ⇒ Gal(M:L) is a normal subgroup of Gal(M:k) and

 $\frac{\text{Gal}(M:k)}{\text{Gal}(M:L)} \cong \text{Gal}(L:k)$

7.2 Separability

Ofn 7.2.2: An irred. poly over a field is separable if it has no repeated roots in its splitting field.

Exm 7.2.4: irreducible polynomial that's inseparable: p prime, $K = IF_p(U) = field$ of rational expressions in U over IFp, and let $f(t) = t^p - U$.

let a be a root of f in SFK(f). Then

$$(t-\alpha)^{\mathbf{p}} = \sum_{i=\alpha}^{\mathbf{p}} {p \choose i} t^{i} (-\alpha)^{\mathbf{p}-i} = t^{\mathbf{p}} - \alpha^{\mathbf{p}} = f(t)$$

⇒ of is only noot of fin SFK(f).

Dfn 7.2.7: Let K be a field and $f(t) = \sum_{i=0}^{n} a_i t^i$. The formal derivative of f is $(Df)(t) = \sum_{i=0}^{n} ia_i t^{i-1} \in k[t]$

lem 7.2.8: D(f+q) = Df + Dg , D(fg) = f Dg + g Df , Da = 0.

lem 7.2.10: 0 ≠ f ∈ k[t].
 f has a repeated root in SF*(f);
 ⇔ f and Df have a common root in SF*(f);
 ⇔ f and Df have a nonconstant common factor in k[t]
Prop 7.2.11: f ∈ k[t] irred. f is inseparable ⇔ Df = 0
Cor 7.2.12: • Char k = 0 ⇒ every irred poly over K is sep.

• CharK = P>0 \Rightarrow irred poly $f \in K[t]$ is sep. iff $f(t) = b_0 + b_1 t^P + \cdots b_r t^{rP}$.

Dfn 7.2.14: M:k algebraic. deM is seperable if min poly m over k is sep. M:k seperable > V a EM seperable.

For M:L:K:Ex. 7.2.16 M:K algebraic \Rightarrow M:L, L:K algebraic Lem 7.2.17: M:K separable \Rightarrow M:L, L:K separable

Thm 7.2.19: $|Gral(M:k)| = [M:k] \forall finite, normal, Separable extensions M:K.$

7.3. Fixed Fields

Dfn 7.3.1: X, Y sets, $H \subseteq \tilde{z}$ functions $X \rightarrow Y\tilde{z}$. Equalizer of H: Eq(H):= $\tilde{z} \times \varepsilon X$: $f(x) = q(x) \forall f, q \in H$

Lem 7.3.2; M, M' fields, H ⊆ { Homo M→M'}. Then Eq(H) is a subfield of M.

Dfn 7.3.3: M field, $H \subseteq Aut(M)$. Fixed field of H is $Fix(H) = \{ \alpha \in M : \Psi(\alpha) : \alpha \forall \Psi \in H \}$

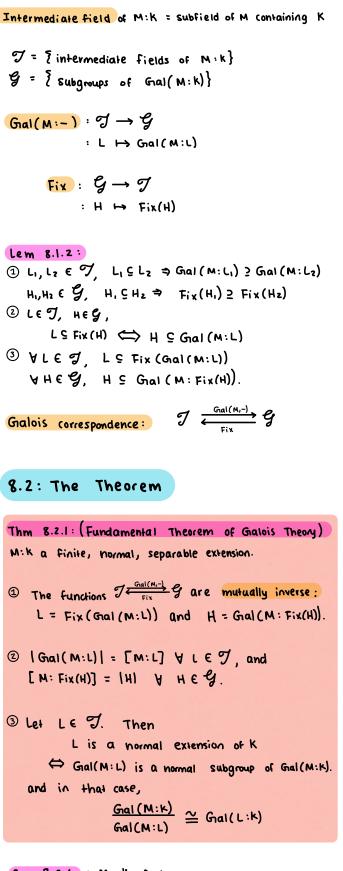
Lem 7.3.4: Fix(H) is a subfield of M.

Thm 7.3.6: M field and $H \le Aut(M)$ finite. Then $[M: Fix(H)] \le |H|.$

Lem 7.3.10: M field, H \leq Aut (M), $\varphi \in$ Aut (M). Then Fix ($\varphi H \varphi^{-1}$) = φ Fix (H).

Prop 7.3.11: M:K field extension, H normal subgroup of Gal(M:K). Think Fix(H):K is normal.

8.1 Galois Correspondence



Cor 8.2.6 : M : K finite, normal, separable. Then $\forall \alpha \in M \setminus K$, $\exists \Psi \in Aut(M)$ over K such that $\Psi(\alpha) \neq \alpha$.

9.1 Radicals

Dfn 9.1.2: Let \mathbb{Q}^{rad} be the smallest subfield of \mathbb{C} s+ $\forall \alpha \in \mathbb{C}$, $\alpha^n \in \mathbb{Q}^{rad}$, $n \gg 1 \Rightarrow \alpha \in \mathbb{Q}^{rad}$. α "radical" if $\alpha \in \mathbb{Q}^{rad}$.

Dfn 9.1.5; poly over Q is "solvable by radicals if all it's (omplex roots are radical.

lem 9.1.6: n~1, Gala(tⁿ-1) is abelian

Lem 9.1.8: k a field, $n \ge 1$. Suppose $t^n - 1$ splits in k. Then Galk $(t^n - a)$ is abelian $\forall a \in k$

9.2. Solvability by Radicals

Dfn 9.2.1. M:k finite , normal, separable. Then M:K is solvable if 3 5% and intermediate fields

K = Lo ⊆ L, ⊆ ... ⊆ Lr = M s.t. Li : Li -1 is normal and Gal(Li : Li -1) is abelian.

Ex. 9.2.2: N:M:K finile, normal, separable. If N:M and M:K are solvable, then so is N:K.

 $E_x 9.2.3$: $SF_{Q}(t^n - a): \mathbb{Q}$ is solvable

Lem 9.2.4: M:K finite, normal, separable.

M: k is solvable 🖨 Gral (M: K) is solvable.

Lem 9.2.6: L, M subfields of C s.+ L: Q and M: Q are finite, normal and solvable. Then 3 subfield N of C s.t LUM C N and N: Q is finite, normal and solvable.

 $\mathbb{Q}^{Sol} := \begin{cases} \alpha \in \mathbb{C} : \alpha \in L \text{ for some Subfield LSC} \\ \text{that is finite, normal and solvable over Q} \end{cases}$

Prop 9.2.10: Qrad & Qsol

Thm 9.2.11: $f \in \mathbb{Q}[t]$. If f is solvable by radicals, then $\operatorname{Gral}_{\mathbb{Q}}(f)$ is solvable

9.3 An unsolvable polynomial

Lem 9.3.1: f irred. poly. over k, with $SF_{K}(f)$: k separable. Then $deg(f) | |Gal_{K}(f)|$

Lem 9.3.3: p prime, $f \in Q[t]$ irred., deg(f) = p, exactly p-z real roots. Then $Gal_Q(f) \cong Sp$

Thm 9.3.5: Not every polynomial over Q of degree 5 is solvable by radicals

e.g. $f(t) = t^5 - 6t + 3$.

10.1 pth Roots in Characteristic P

Prop 10.1.1: p prime, R a ring With Char (R) = P. (a) $\theta: R \Rightarrow R$, $r \mapsto r^{P}$ is homo (b) R field $\Rightarrow \Theta$ injective (c) R field $\Rightarrow \Theta$ injective (c) R finite $\Rightarrow \Theta$ automorphism

Rem: Char = $p \Rightarrow (r+s)^{P} = r^{P} + s^{P}$

Cor 10.1.4: p prime

(1) field charp, eveny element has at most one pth root
 (2) finite field charp, eveny element has exactly one pth root.

10.2 Classification of finite fields

Order of a finite field M = cardinality of M = [M]

WARNING: order \neq degree of a field! Lem 10.2.2: Let M be a finite field. Then char M = p, and (MI = pⁿ where n = [M: IFp] >1.

Lem 10.2.4: P prime, n-,1. Then the splitting field of t^{pn}-t over 15p has order pⁿ.

Lem 10.2.5; |M| = q, then $\alpha^{q} = \alpha \forall \alpha \in M$

Lem 10.2.7: |M| = Q, then M is a splitting field of $t^{Q} - t$ over IFp.

Thm 10.2.8 : (Classification of Finite Fields)

- ⁽¹⁾ Every finite field has order pⁿ for some prime p and n >1.
- ⁽³⁾ V prime p and n>1, 3! field of order pⁿ (up to iso). Has char = p and is a splitting field for t^{pn}-t over IFp.

10.3 Multiplicative Structure

Prop 10.3.1: Field K: Every finite subgroup of K^* is cyclic.(\Rightarrow) k finite $\Rightarrow K^*$ cyclic.

Cor 10.3.5: Every extension of one finite field over another is simple.

Cor 10.3.8: prime p, n>1. 3 an irred. poly over 1Fp OF degree n.

10. 4 Galois Groups for finite fields

Lem 10.4.2: M: k field extension ^① K finite ⇒ M: K separable ^② M finite ⇒ M:K finite, normal.

Prop 10.4.3: P prime, n >1. Gal(1Fpn:1Fp) is cyclic and of order n, generated by the Frobenius auto of 1Fpn.

Prop 10.4.6: P prime, $n \gg 1$. IFpn has exactly one subfield of order p^m for each divisor m of n, and no others: = $\sum \alpha \in |F_P^n : \alpha|^{p^m} = \alpha$

 $G_{nal}(\mathbb{F}_{p^{n}};\mathbb{F}_{p}) = \langle \Theta \rangle \stackrel{\sim}{=} C_{n}$ Fix $\langle \Theta \rangle = \mathbb{F}_{p}$

When kln, ! Subgroup of order k is $\langle \Theta^{n_{k}} \rangle$. Fix $\langle \Theta^{n_{k}} \rangle = \{ \alpha \in |F_{P^{n}} : \alpha^{P^{n_{k}}} = \alpha \}$

Gial (IFpn : IFpm) ≥ Civm